3 O Problema da Análise de Congestionamento

Neste capítulo, será descrito o *Problema da Análise de Congestionamento*, um problema que surge a partir do *Problema de Planejamento de Atendimento*. Uma formulação será proposta para a solução do problema e os resultados obtidos com esta solução serão analisados.

3.1 Descrição do Problema

Conforme foi descrito no capítulo anterior, cada trecho existente na malha possui um tempo de percurso definido em minutos. Este tempo é utilizado em várias partes da formulação, principalmente no consumo dos recursos da malha, como locomotivas e vagões. Como é um dado de entrada do problema, o tempo de cada trecho é resultado de uma estimativa feita pela empresa operadora da malha, baseada no histórico dos tempos obtidos nos transportes de anos anteriores. Porém, foi constatado que, quando o número de trens que passam por um certo trecho da malha aumenta, o tempo de percurso deste arco também aumenta, podendo chegar a um valor muito superior ao tempo da estimativa feita. A partir desta observação é que surge o *Problema da Análise de Congestionamento*. Quando existe uma grande diferença entre o tempo utilizado na formulação matemática e o tempo de percurso real, a solução encontrada não estará contabilizando corretamente o consumo dos vagões e locomotivas disponíveis na malha. Desta forma, algumas adições à formulação do *Problema de Planejamento de Atendimento* devem ser feitas para refletir este comportamento.

Inicialmente, a variação do tempo de percurso de um certo trecho da malha pode ser definida por uma função convexa, exemplificada na figura 3.1, possuindo um eixo indicando o número de trens que passam por este arco no período e um outro eixo indicando o valor do tempo de percurso deste arco. Para representar esta variação de tempo na formulação matemática seria necessária a criação de uma variável que indicasse o tempo de percurso em função da quantidade de trens que passam no arco, o que resultaria em uma formulação

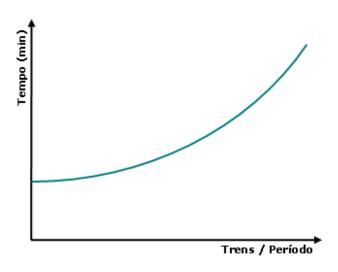


Figura 3.1: Uma função convexa de congestionamento

quadrática, visto que esta variável de tempo substituiria a constante t_a , que é multiplicada por algumas variáveis presentes na formulação.

Uma solução para este problema é a utilização do algortimo de Frank-Wolfe de combinação convexa. Este algoritmo executa, a cada passo, uma linearização da função objetivo, baseado em várias derivadas da função convexa, e então calcula um passo em alguma direção que melhore a função objetivo, sempre mantendo a sua viabilidade. A figura 3.2 exemplifica algumas derivadas da função convexa. Esta abordagem não é utilizada aqui, pois ela obrigaria o desenvolvimento de todo o algoritmo de solução para problema, em vez da utilização das bibliotecas comerciais de otimização e, por ser uma formulação bastante extensa e complexa, o custo de desenvolvimento não compensaria o resultado, visto que existem alternativas aproximadas que determinam soluções muito boas e que são bem mais simples de serem implementadas.

A primeira solução alternativa seria a criação de vários arcos para cada trecho da malha, onde os arcos criados para um trecho possuem o tempo de percurso representados de forma incremental, como exibido na figura 3.3. Desta forma, é criada uma aproximação do tempo de percurso baseado em cada faixa de número de trens e os arcos serão utilizados de acordo com esta regra. Por exemplo, em um certo trecho t, pode-se dizer que os 5 primeiros trens que passarem pelo trecho utilizarão o arco inicial, que custa 40 minutos. Do sexto ao vigésimo trem que passarem pelo trecho utilizarão o segundo arco, que possui um custo de 15 minutos a mais que o arco inicial, totalizando 55 minutos. Do vigésimo primeiro ao quadragésimo trem que passarem utilizarão o terceiro arco, que possui um custo de 30 minutos a mais que o arco inicial, totalizando 70 minutos. Desta forma, os tempos utilizados em função dos números de trens

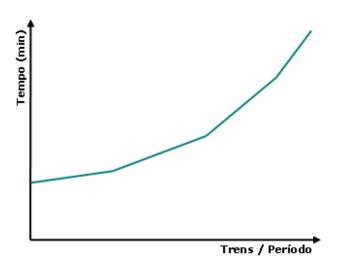


Figura 3.2: Função baseada em algumas derivadas da função convexa

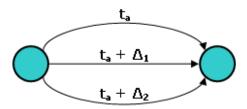


Figura 3.3: Arcos com custos de tempo incrementais

serão bem próximos aos tempos reais encontrados na malha ferroviária.

A segunda solução alternativa, uma variação da anterior, consiste na definição de uma função degrau para cada trecho da malha, baseada na função de congestionamento original, como visto na figura 3.5. Cada trecho da malha passa a possuir vários arcos, exibido na figura 3.4, um para cada faixa de trens existentes nesta função e apenas um destes arcos será utilizado para o transporte na solução. Mesmo sendo bastante parecida com a abordagem anterior, esta abordagem possui a vantagem de ser mais simples, desde o cálculo dos tempos das faixas de trens, por não necessitar considerar o incremento dos tempos entre os arcos, até na definição das adições necessárias à formulação matemática existente. Além disso, as soluções encontradas são tão boas quanto as soluções da abordagem anterior. Isto se deve ao fato da precisão de ambas dependerem do número de arcos que são criados para cada trecho da malha.

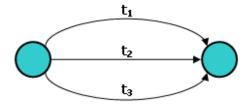


Figura 3.4: Arcos com custos de tempo independentes

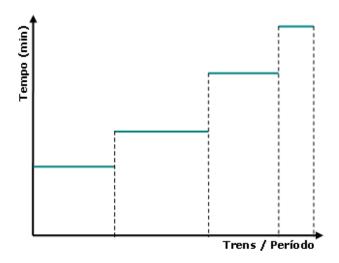


Figura 3.5: Função degrau baseada na função de congestionamento original

3.2 Formulação Matemática

Para a formulação matemática aqui criada para o *Problema da Análise de Congestionamento* será utilizada a última abordagem descrita na seção anterior. Esta permite uma maior simplicidade nas alterações necessárias à formulação, mantendo as soluções encontradas em um bom nível em relação às outras abordagens aproximadas.

A princípio, deve-se definir o conjunto C_r , como o conjunto das faixas existentes na função de congestionamento da rota r. Desta forma, as variáveis binárias cg_{cp}^r são definidas, indicando se a faixa c de congestionamento está sendo usada na rota r, no período p. É fácil perceber que estas variáveis, para cada rota, devem ser exclusivas, isto é, se, para uma rota r, está sendo utilizado a segunda faixa de congestionamento, nenhuma outra faixa pode ser utilizada. A partir desta observação, as restrições de exclusividade de faixas de congestionamento são

definidas.

$$\sum_{c \in C} cg_{cp}^r \le 1 \quad \forall r \in R \quad \forall p \in P \tag{3-1}$$

A escolha da faixa da função de congestionamento que será utilizada para uma rota r depende da quantidade de trens que percorrem esta rota no período. Isto pode ser obtido com o somatório das variáveis tt_r^{tp} para todas os trens associados à rota e logo em seguida comparando com os valores de início $(iCong_c^r)$ e fim $(fCong_c^r)$ de cada faixa da função. É desta forma que são criadas as restrições de congestionamento mínimo e máximo.

$$\sum_{t \in T} t t_r^{tp} \ge i Cong_c^r . cg_{cp}^r \quad \forall r \in R \quad \forall p \in P \quad \forall c \in C_r$$
 (3-2)

$$\sum_{t \in T} t t_r^{tp} \le f Cong_c^r.cg_{cp}^r \quad \forall r \in R \quad \forall p \in P \quad \forall c \in C_r$$
 (3-3)

Com estas restrições, as modificações na formulação para a escolha da faixa da função de congestionamento que será utilizada estão concluídas. Porém, é necessário considerar os tempos de percurso de cada trecho baseado na faixa utilizada. É neste ponto que surge o problema. As variáveis x_{ar}^{kp} e v_{ar}^{kp} utilizam o tempo de percurso do trecho como coeficiente em várias partes da formulação e este tempo de percurso, que antes era único para cada trecho da malha, passa a ser um para cada faixa existente na função de congestionamento, indicado por $tCong_c^a$.

Para evitar uma alteração na formulação que gere elementos quadráticos, as variáveis x_{ar}^{kp} e v_{ar}^{kp} devem ser replicadas para cada faixa da função de congestionamento. Desta forma, as variáveis referentes às faixas da função de congestionamento que não são utilizadas devem sempre serem zeradas, enquanto as variáveis referentes à faixa utilizada possuirão os valores corretos. Isto deve ser feito em relação às variáveis que indicam a utilização das faixas, cg_{cp}^r . Uma solução intuitiva seria a criação de restrições para zerar os valores destas variáveis, utilizando um coeficiente grande o suficiente, normalmente chamado de BIGM. Assim, as restrições criadas para limitar as variáveis x_{ar}^{kp} seriam:

$$x_{arc}^{kp} \le M.cg_{cp}^r \quad \forall r \in R \quad \forall a \in A_r \quad \forall k \in K \quad \forall p \in P \quad \forall c \in C_r$$
 (3-4)

Porém, o uso desta técnica pode resultar em uma grande queda na eficiência da formulação criada e, por este motivo, foi dada preferência para outra solução. Como as variáveis tt_r^{tp} são usadas para a determinação da faixa de con-

gestionamento utilizada, se estas forem replicadas da mesma forma que as variáveis x_{ar}^{kp} e v_{ar}^{kp} e, em todas as partes da formulação, forem utilizadas somadas, elas podem ser utilizadas para zerar as variáveis x_{ar}^{kp} e v_{ar}^{kp} . Inicialmente, é necessária a modificação das restrições de congestionamento mínimo e máximo da seguinte forma:

$$\sum_{t \in T} tt_{rc}^{tp} \ge iCong_c^r.cg_{cp}^r \quad \forall r \in R \quad \forall p \in P \quad \forall c \in C_r$$
 (3-5)

$$\sum_{t \in T} tt_{rc}^{tp} \le fCong_c^r.cg_{cp}^r \quad \forall r \in R \quad \forall p \in P \quad \forall c \in C_r$$
 (3-6)

Como somente pode existir uma variável cg_{cp}^r com valor 1 para cada rota e para cada parte, apenas as variáveis tt_{rc}^{tp} para um valor de c possuirão o número de trens utilizados. Sendo assim, a ligação entre estas variáveis com as novas variáveis x_{arc}^{kp} e v_{arc}^{kp} será feita nas restrições de capacidade de tração, que serão replicadas da mesma forma que estas variáveis. Com esta alteração, surge mais um problema, as variáveis f_{ar}^{dkp} , que, caso não forem replicadas para cada faixa da função de congestionamento, serão sempre zeradas, desde que exista mais de uma faixa na função. Com esta última alteração, obtem-se a alteração conclusiva na formulação para o Problema de Análise de Congestionamento.

$$\sum_{d \in D} \sum_{k \in K} f_{arc}^{dkp} + \sum_{k \in K} tara_k \cdot \left(x_{arc}^{kp} + v_{arc}^{kp} \right) \le \sum_{t \in T} CapTB_{ar}^t \cdot tt_{rc}^{tp}$$

$$\forall r \in R \quad \forall a \in A_r \quad \forall p \in P \quad \forall r \in C_r$$
(3-7)

Como dito anteriormente, apenas as variável tt^{tp}_{rc} para um valor de c possuirão os números de trens, sendo que todas as outras estarão zeradas. Desta forma, as outras variáveis presentes na restrição possuirão o mesmo comportamento, obtendo, assim, o resultado desejado. Por fim, a formulação completa está concluída.

$$\begin{split} MAX \sum_{p \in P} \sum_{d \in D} \sum_{k \in K} tarifa_d.w_d^{kp} - \sum_{p \in P} \sum_{d \in D} \sum_{k \in K} \sum_{r \in R} \sum_{a \in A_r} \sum_{c \in C_r} \left(custo_k.dist_a \right) f_{arc}^{dkp} \\ - \sum_{p \in P} \sum_{k \in K} \sum_{r \in R} \sum_{a \in A_r} \sum_{c \in C_r} \left(custo_k.dist_a.tara_k \right) . \left(x_{arc}^{kp} + v_{arc}^{kp} \right) \\ - \sum_{p \in P} \sum_{r \in R} \sum_{a \in A_r} \sum_{t \in T} \sum_{c \in C_r} \left(cDiesel.consDie_t.dist_a \right) tt_{rc}^{tp} \end{split}$$

$$\sum_{r \in R} \sum_{a \in \delta^+(u) \cap A_r} \sum_{c \in C_r} f_{arc}^{dkp} - \sum_{r \in R} \sum_{a \in \delta^-(u) \cap A_r} \sum_{c \in C_r} f_{arc}^{dkp} = \begin{cases} & w_d^{kp} & \text{se } u = s_d \\ & -w_d^{kp} & \text{se } u = t_d \\ & 0 & \text{caso contrário} \end{cases}$$

$$\forall u \in V \quad \forall k \in K \quad \forall d \in D \quad \forall p \in P$$

$$\sum_{r \in R} \sum_{a \in \delta^{+}(u) \cap A_{r}} \sum_{c \in C_{r}} x_{arc}^{kp} - \sum_{r \in R} \sum_{a \in \delta^{-}(u) \cap A_{r}} \sum_{c \in C_{r}} x_{arc}^{kp} = 0$$

$$\forall u \in V \quad \forall k \in K \quad \forall p \in P$$

$$\sum_{d \in D} \sum_{c \in C_r} \frac{f_{arc}^{dkp}}{Cap_k} + z_{ar}^{kp} = \sum_{c \in C_r} x_{arc}^{kp} \quad \forall a \in A_r \quad \forall k \in K \quad \forall r \in R \quad \forall p \in P$$

$$\sum_{k \in K} w_d^{kp} \leq qt Pedida_d^p \quad \forall d \in D \quad \forall p \in P$$

$$\sum_{d \in D} \sum_{r \in R_a} \sum_{k \in K} \sum_{c \in C_r} f_{arc}^{dkp} + \sum_{r \in R_a} \sum_{k \in K} \sum_{c \in C_r} tara_k. \left(x_{arc}^{kp} + v_{arc}^{kp} \right) \le CapSup_a.DP_p$$

$$\forall a \in A \quad \forall p \in P$$

$$\sum_{r \in R} \sum_{a \in A_r} \sum_{c \in C_r} \frac{tCong_c^a}{TP_p} \left(x_{arc}^{kp} + v_{arc}^{kp} \right) + \sum_{d \in D} \frac{g_k}{TP_p} \frac{w_d^{kp}}{Cap_k} \le N_k \quad \forall k \in K \quad \forall p \in P$$

$$\sum_{t \in T} \sum_{r \in R} \sum_{a \in A_r} \sum_{c \in C_r} \frac{tCong_c^a}{TP_p} NLoc_l^t.tt_{rc}^{tp} \leq LocoDisp_l \quad \forall l \in L \quad \forall p \in P$$

$$\sum_{d \in D} \sum_{k \in K} f_{arc}^{dkp} + \sum_{k \in K} tara_k \cdot \left(x_{arc}^{kp} + v_{arc}^{kp} \right) \le \sum_{t \in T} CapTB_{ar}^t \cdot tt_{rc}^{tp}$$

$$\forall r \in R \quad \forall a \in A_r \quad \forall p \in P \quad \forall c \in C_r$$

$$\sum_{t \in T} \sum_{c \in C_r} tt^{tp}_{rc} \geq MinViagTT_r \quad \forall r \in R \quad \forall p \in P$$

$$\sum_{t \in T} \sum_{c \in C_r} tt_{rc}^{tp} \geq \sum_{k \in K} \sum_{c \in C_r} \frac{f_{arc}^{dkp}}{Cap_k.MaxVag_d} \quad \forall a \in A \quad \forall d \in D \quad \forall r \in R \quad \forall p \in P$$

$$e^p_{uk} = EstIni^u_k \quad \forall u \in V \quad \forall k \in K \quad p = 0$$

$$\sum_{u \in V} e_{uk}^p = N_k \quad \forall k \in K \quad p = 0$$

$$e_{uk}^{p} \ge \sum_{d \in DO_{u}} \frac{g_{k}}{TP_{p}} \frac{w_{d}^{kp}}{Cap_{k}} + \sum_{d \in DD_{u}} \frac{g_{k}}{TP_{p}} \frac{w_{d}^{kp}}{Cap_{k}} + \sum_{r \in R} \sum_{a \in \delta^{+}(u) \cap A_{r}} \sum_{c \in C_{r}} \frac{tCong_{c}^{a}}{2TP_{p}} \left(x_{arc}^{kp} + v_{arc}^{kp}\right) + \sum_{r \in R} \sum_{a \in \delta^{-}(u) \cap A_{r}} \sum_{c \in C_{r}} \sum_{c \in C_{r}} \frac{tCong_{c}^{a}}{2TP_{p}} \left(x_{arc}^{kp} + v_{arc}^{kp}\right) \quad \forall u \in V \quad \forall k \in K \quad \forall p \in P$$

$$\sum_{r \in R} \sum_{a \in \delta^{-}(u) \cap A_r} \sum_{c \in C_r} v_{arc}^{kp} - \sum_{r \in R} \sum_{a \in \delta^{+}(u) \cap A_r} \sum_{c \in C_r} v_{arc}^{kp} = e_{uk}^p - e_{uk}^{p-1} + p_{uk}^p - p_{uk}^{p-1}$$

$$\forall u \in V \quad \forall k \in K \quad \forall p \in P$$

$$\sum_{c \in C} cg_{cp}^r \le 1 \quad \forall r \in R \quad \forall p \in P$$

$$\sum_{t \in T} tt^{tp}_{rc} \geq iCong^r_c.cg^r_{cp} \quad \forall r \in R \quad \forall p \in P \quad \forall c \in C_r$$

$$\sum_{t \in T} tt_{rc}^{tp} \le fCong_c^r.cg_{cp}^r \quad \forall r \in R \quad \forall p \in P \quad \forall c \in C_r$$

$$cg_{cp}^r \in \{0,1\} \quad \forall r \in R \quad \forall c \in C_r \quad \forall p \in P$$

Todas as outras variáveis são não-negativas e contínuas.

3.3 Resultados Computacionais

Como no capítulo anterior, foram feitos testes em algumas instâncias simples, em uma malha fictícia. Para cada arco destas instâncias foi criada uma função de congestionamento possuindo cinco faixas de valores crescentes. A tabela 3.1 apresenta os resultados dos testes nestas instâncias.

Como pode ser observado, todas estas instâncias simples foram resolvidas à otimalidade. O atendimento das demandas foi penalizado pela maior utilização de vagões e o número de linhas e colunas aumentou devido a introdução das novas variáveis e restrições à formulação original do problema.

Para o teste das instâncias reais, também foram adicionadas cinco faixas de congestionamento, obtendo-se os resultados apresentados nas tabelas de 3.2 à 3.4 e consolidados na tabela 3.5.

#	nCols1	nLins1	TT1	nCols2	nLins2	TT2	Att	Gap
1	2116	1370	0,656	6212	2015	0,265	100,00%	0,00%
2	2116	1372	0,688	6311	2030	0,297	100,00%	0,00%
3	2116	1374	0,610	6323	2033	0,297	100,00%	0,00%
4	2116	1374	0,688	6238	2016	0,297	85,22%	0,00%
5	2116	1375	0,687	6262	2022	0,266	75,32%	0,00%
6	2116	1375	0,734	6244	2019	0,251	63,57%	0,00%
7	2081	1375	1,000	6234	2024	0,282	56,76%	0,00%
8	2081	1375	0,640	6234	2024	0,313	50,91%	0,00%
9	2081	1375	0,766	6219	2021	0,266	44,79%	0,00%
10	2081	1375	0,672	6169	2011	0,297	42,42%	0,00%

Tabela 3.1: Resultados computacionais das instâncias simples do *Problema da Análise do Congestionamento*

#	Per	Dem	nCols1	nLins1	TT1	nCols2	nLins2	TT2	Gap
1	1	49	521623	389611	80,434	1820210	647652	13,743	0,00%
1	2	49	521627	390033	89,406	1830318	649505	39,976	0,00%
1	3	49	521625	390167	89,264	1829072	649132	47,377	0,00%
1	4	49	521627	390059	88,949	1829654	649154	43,975	0,00%
1	5	49	521528	390063	89,465	1831052	649654	45,260	0,00%
1	6	49	521634	390182	89,580	1831354	649763	61,118	0,00%
1	7	49	521638	390194	89,665	1832443	649785	50,032	0,00%
1	8	49	521638	390196	88,636	1832377	649774	54,175	0,00%
1	9	49	521638	390196	89,064	1832244	649756	56,490	0,00%
1	10	49	521638	390198	90,009	1830328	649718	44,231	0,00%
1	11	49	521512	390182	87,864	1828476	649392	39,519	0,00%
1	12	49	521625	390163	88,664	1822363	648213	26,745	0,00%

Tabela 3.2: Resultados computacionais para a instância 1 do *Problema da Análise do Congestionamento*

#	Per	Dem	nCols1	nLins1	TT1	nCols2	nLins2	TT2	Gap
2	1	60	537089	401324	110,609	1952581	705586	19,087	0,00%
2	2	60	537089	401681	116,437	1954689	706155	29,403	0,00%
2	3	60	537087	401680	117,239	1954305	706025	28,402	0,00%
2	4	60	537100	401716	118,639	1955703	706506	31,860	0,00%
2	5	60	537003	401927	121,325	1956504	706887	30,773	0,00%
2	6	60	537107	401943	117,640	1956537	706878	30,173	0,00%
2	7	60	537107	401950	119,010	1956755	706949	30,259	0,00%
2	8	60	537107	401956	119,067	1956942	706991	31,831	0,00%
2	9	60	537107	401958	120,639	1957110	707059	30,859	0,00%
2	10	60	537107	401963	121,067	1957566	707211	30,173	0,00%
2	11	60	536984	401954	117,325	1955608	706587	34,832	0,00%
2	12	60	537101	401760	118,924	1955013	706289	28,973	0,00%

Tabela 3.3: Resultados computacionais para a instância 2 do *Problema da Análise do Congestionamento*

#	Per	Dem	nCols1	nLins1	TT1	nCols2	nLins2	TT2	Gap
6	1	82	830921	549842	154,121	2813546	988118	29,992	0,00%
6	2	82	830924	550438	166,642	2824036	990120	59,642	0,00%
6	3	82	830924	550585	167,613	2822824	989756	81,602	0,00%
6	4	82	830924	550469	166,587	2823992	989898	63,959	0,00%
6	5	82	830825	550479	167,244	2824620	990233	89,379	0,00%
6	6	82	830933	550601	167,128	2825161	990392	61,356	0,00%
6	7	82	830937	550618	165,613	2825879	990555	69,478	0,00%
6	8	82	830937	550623	165,013	2825670	990531	82,571	0,00%
6	9	82	830943	550640	165,985	2825831	990564	75,654	0,00%
6	10	82	830939	550634	164,440	2823088	990403	57,610	0,00%
6	11	82	830811	550610	165,899	2821668	990164	57,354	0,00%
6	12	82	830924	550596	164,555	2815012	988822	47,489	0,00%

Tabela 3.4: Resultados computacionais para a instância 6 do *Problema da Análise do Congestionamento*

#	Dem	nCols1	nLins1	TT1	nCols2	nLins2	TT2	Gap
1	49	6259352	4681244	1060,999	21949891	7791500	522,643	0,00%
2	60	6444986	4821812	1417,922	23469311	8479122	356,625	0,00%
3	50	8264798	5611605	1060,772	27436070	9557872	370,798	0,00%
4	49	6388876	4712504	631,912	23825894	8630664	959,050	0,00%
5	50	6685669	4880950	1184,045	24620011	8908795	469,011	0,00%
6	82	9970943	6606135	1980,840	33871327	11879557	776,085	0,00%
7	83	8438915	5893068	1817,195	30349802	10839386	948,392	0,00%
8	93	7819689	5667598	2647,305	28912686	10481266	641,959	0,00%

Tabela 3.5: Resultados computacionais consolidados para as instâncias do *Problema da Análise de Congestionamento*